MAX materials and MXene materials are new two-dimensional materials that have attracted much attention lately, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. This is an in depth guide to the properties, applications, and development trends of MAX and MXene materials.
What is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material composed of M, A, X elements in the periodic table, collectively called “MAX phase”. M represents transition metal elements, such as titanium, zirconium, hafnium, etc., A represents the primary group elements, including aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer consists of M, A, X, three of the components of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they are widely used in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding as well as other fields.
Properties of MAX material
MAX material is a new kind of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M means the transition metal, A refers to the main-group elements, and X refers to the components of C or N. The MXene material is a graphene-like structure obtained by the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX Phases and MXenes are novel two-dimensional nanomaterials made from carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the excellent physical properties of MAX materials make them have an array of applications in structural materials. As an example, Ti3SiC2 is a kind of MAX material with good high-temperature performance and oxidation resistance, which may be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials will also be utilized in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and may be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials likewise have better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which can be utilized in energy materials. For example, K4(MP4)(P4) is one from the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
What are MXene materials?
MXene materials really are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The surface of MXene materials can interact with more functional atoms and molecules, as well as a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation methods of MXene materials usually include the etching management of the MAX phase and the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties such as electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials really are a new kind of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., as well as good chemical stability and the opportunity to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and therefore are widely used in energy storage and conversion. As an example, MXene materials bring electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials can also be used as catalysts in fuel cells to enhance the activity and stability from the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be used in electromagnetic protection. As an example, MXene materials can be used electromagnetic shielding coatings, electromagnetic shielding cloth, along with other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For example, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials can also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. Later on, with all the continuous progress of technology and science as well as the increasing demand for applications, the preparation technology, performance optimization, and application parts of MAX and MXene materials will likely be further expanded and improved. These aspects may become the main objective of future research and development direction:
Preparation technology: MAX and MXene materials are mostly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and methods can be further explored to understand a much more efficient, energy-saving and eco-friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, but there is still room for additional optimization. In the future, the composition, structure, surface treatment along with other aspects of the content can be studied and improved in depth to enhance the material’s performance and stability.
Application areas: MAX materials and MXene materials happen to be widely used in lots of fields, but there are still many potential application areas to be explored. In the future, they may be further expanded, such as in artificial intelligence, biomedicine, environmental protection along with other fields.
In conclusion, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show an extensive application prospect in many fields. With all the continuous progress of technology and science as well as the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.